Search results

Search for "vanadium oxide" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • –TiO2 make use of its photocatalytic activity, there are also some applications of shape-controlled TiO2–graphene hybrids used in pollutant abatement [100], high-performance anodes for microbial fuel cells [101], and self-cleaning applications [102]. Vanadium oxide (VO, V2O3, VO2, V2O5)–graphene hybrids
PDF
Album
Review
Published 24 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • oxidation state in vanadium pentoxide (V2O5) – a good oxygen transfer catalyst that is (thermally) stable in air and vacuum [7][8][9][10]. Therefore, we considered vanadium oxide as a promising material for functionalising a graphene sensor in order to increase its selectivity towards reducing pollutant
  • gases, such as ammonia. Vanadium oxide based films and nanostructured layers have been previously synthesised for gas sensing applications by various methods [11], including pulsed laser deposition (PLD) [12]. PLD is a highly versatile method for relatively well-controlled preparation of thin films, and
  • present work, we demonstrate functionalisation of single-layer CVD graphene with a few layers of laser deposited V2O5. The amount and chemical state of vanadium oxide on graphene was characterized by X-ray photoelectron spectroscopy and X-ray fluorescence. The impact of the PLD process on graphene defect
PDF
Album
Full Research Paper
Published 07 Mar 2017

Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles

  • Danny E. P. Vanpoucke,
  • Jan W. Jaeken,
  • Stijn De Baerdemacker,
  • Kurt Lejaeghere and
  • Veronique Van Speybroeck

Beilstein J. Nanotechnol. 2014, 5, 1738–1748, doi:10.3762/bjnano.5.184

Graphical Abstract
  • (V) The periodic cell used in this work contains 4 formula units or 72 atoms, and is shown in Figure 1a. This cell contains 2 vanadium oxide chains with 2 vanadium atoms per chain. Each V atom contains one unpaired d-electron, since the V atoms have a formal charge of +IV in the MIL-47(V) topology
  • ] have been calculated to provide a better understanding of the superexchange mechanism in the vanadium oxide chains and the influence of the spin configuration on the electron distribution. For all spin configurations, the calculated V charge is found to be 2.44e and 2.43e for antiferromagnetic and
  • cell, showing the high symmetry k-points. (c) Ball-and-stick representation of a single vanadium oxide chain, indicating the superexchange angle σ, the octahedral backbone angle θ, the inter-V-distance rVV, and the V–O bond lengths and along the chain, and to the linker. (a) Schematic representation
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2014

Photocatalysis

  • Rong Xu

Beilstein J. Nanotechnol. 2014, 5, 1071–1072, doi:10.3762/bjnano.5.119

Graphical Abstract
  • bismuth vanadium oxide cluster exemplifies these characteristics. Besides solar fuel production, photocatalysis has a long history in water treatment. In this Thematic Series, there is also a report on the latest development in the utilization of mesoporous cerium oxide for visible light-driven dye
PDF
Editorial
Published 16 Jul 2014

Visible light photooxidative performance of a high-nuclearity molecular bismuth vanadium oxide cluster

  • Johannes Tucher and
  • Carsten Streb

Beilstein J. Nanotechnol. 2014, 5, 711–716, doi:10.3762/bjnano.5.83

Graphical Abstract
  • Johannes Tucher Carsten Streb Ulm University, Institute of Inorganic Chemistry I, Albert-Einstein-Allee 11, 89081 Ulm, Germany 10.3762/bjnano.5.83 Abstract The visible light photooxidative performance of a new high-nuclearity molecular bismuth vanadium oxide cluster, H3[{Bi(dmso)3}4V13O40], is
  • turnover numbers (TON ca. 1200) and turnover frequencies up to TOF ca. 3.44 min−1 are observed, illustrating the practical applicability of the cluster species. Keywords: photocatalysis; photooxidation; polyoxometalate; self-assembly; vanadium oxide; Introduction The bottom-up self-assembly of molecular
  • a recently-established fragmentation-and-reaggregation strategy, see Supporting Information File 1. The route gives general access to metal-functionalized, anion-templated vanadium oxide clusters [5][27][28][29][30][31][32][42]. Here, this approach was successfully employed and gave the cluster
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2014

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • without a coaxial layer of vanadium oxide (V2O5) as cathode and anode, respectively. Due to their unique properties (e.g., large surface area, electrical conductivity, regular pore structure, electrolyte accessibility, charge transport), they are candidates for replacing traditional electrodes. Instead of
PDF
Album
Review
Published 22 Feb 2013

Switching adhesion forces by crossing the metal–insulator transition in Magnéli-type vanadium oxide crystals

  • Bert Stegemann,
  • Matthias Klemm,
  • Siegfried Horn and
  • Mathias Woydt

Beilstein J. Nanotechnol. 2011, 2, 59–65, doi:10.3762/bjnano.2.8

Graphical Abstract
  • between the cleavage planes of various vanadium oxide Magnéli phases (n = 3 … 7) and spherical titanium atomic force microscope (AFM) tips by systematic force–distance measurements with a variable-temperature AFM under ultrahigh vacuum conditions (UHV). The results show, for all investigated samples, that
  • ; atomic force microscopy; Magnéli phases; metal–insulator transition; vanadium oxide; Introduction Thermally controlled metal–insulator transitions (MIT) are observed in a large number of crystalline and amorphous semiconductors. Particularly among the transition metal oxides, there are numerous
  • compounds with partially filled electron bands, which show insulator behavior at low temperatures, although they should be metals with respect to the band model. Well-known examples are Magnéli-type vanadium oxide compounds, which form the homologous series VnO2n-1 (3 ≤ n ≤ 10) and which undergo an abrupt
PDF
Album
Full Research Paper
Published 27 Jan 2011
Other Beilstein-Institut Open Science Activities